Actions

BC108 Transistor: Difference between revisions

From DT Online

m (Added image)
mNo edit summary
Line 1: Line 1:
[[File:BC108.png|250px|right]]
[[File:BC108.jpg|250px|right]]
The [https://en.wikipedia.org/wiki/BC548 '''BC108'''] Collector is connected to the positive (+ve) supply via the load. NB: If the load is inductive i.e. has coil windings such as a relay, solenoid or motor, then it is usual to connect a diode across it to prevent the Back EMF from damaging the transistor. (Cathode to supply).
The [https://en.wikipedia.org/wiki/BC548 '''BC108'''] Collector is connected to the positive (+ve) supply via the load. NB: If the load is inductive i.e. has coil windings such as a relay, solenoid or motor, then it is usual to connect a diode across it to prevent the Back EMF from damaging the transistor. (Cathode to supply).



Revision as of 19:02, 1 June 2015

The BC108 Collector is connected to the positive (+ve) supply via the load. NB: If the load is inductive i.e. has coil windings such as a relay, solenoid or motor, then it is usual to connect a diode across it to prevent the Back EMF from damaging the transistor. (Cathode to supply).


The input is connected to the Base via a limiting resistor (typically 1K). The Emitter is connected to the negative (-ve) supply (0V).


Uses: As current amplifiers and electronic switches, for example LED Drive Amplifiers, Relay Drive Amplifiers, Audio Amplifiers.


Data: Voltage between Collector and Emitter 3 - 20Volts max.

  • Power handling capacity 100 mWatts max.
  • bCurrent handling capacity 300 mAmps max.
  • Amplification (gain) greater than 125.