Actions

Conic Sections: Difference between revisions

From DT Online

m (Added link)
(Added note and links)
Line 32: Line 32:
| <span style="color:#B00000">
| <span style="color:#B00000">
* The curve produced when a secton is taken across a right circular cone parallel to the base circle.
* The curve produced when a secton is taken across a right circular cone parallel to the base circle.
* The circle can be considered as a fourth type of conic section  ''(as it was by [https://en.wikipedia.org/wiki/Apollonius_of_Perga '''Apollonius'''])'' or as a special case of ellipse.
* The part of a cone ''(or pyramid)'' lying between two parallel planes such as this is called the [https://en.wikipedia.org/wiki/Frustum '''Frustrum''']
| [[File:Conics-Circle.png |350px|right]]  
| [[File:Conics-Circle.png |350px|right]]  
|-
|-

Revision as of 14:00, 4 April 2015

ConicSections.jpg

A Cone can be described as the Locus of all lines joining points on the circumference of a ‘Base Circle’ to a point, or ‘Apex’, above it. If the Apex lies perpendicularly above the centre of the base circle it is known as a ‘right cone’ and if not, it is an ‘oblique cone’.


A right circular cone is a Solid of Revolution and can be produced by rotating a right angle triangle around one of the sides opposite its hypotenuse. The hypotenuse generates the surface of a cone as it sweeps round the central ‘Axis’. Any line joining the Apex to the Base Circle is known as a ‘Generator’. Generators can continue through the Apex to produce a second cone opposite to the first, creating a ‘Double Cone,’ and each Cone could extend beyond he Base Circles to infinity.


A right circular cone can be sliced across in various ways to produce a number of Conic Sections. These are curves with particular mathematical properties and which are used in engineering design - e.g. cam profiles and arch bridge design.


Ellipse
  • The curve produced when a secton is taken across a right circular cone at an angle to the base circle, and intersecting the generators on both sides.
  • An Ellipse is also the result of taking a section across a Cylinder at at angle to its base.
Conics-ElipseTrans.png
Parabola
  • The curve produced when a secton is taken through a right circular cone parallel to the generator
Conics-ParabolaTrans.png
Hyperbola
  • The curve produced when a secton is taken along a right circular cone parallel to the central Axis - note that with a Double Cone, two Hyperbolas are created.
Conics-HyperbolaTrans.png
Circle
  • The curve produced when a secton is taken across a right circular cone parallel to the base circle.
  • The circle can be considered as a fourth type of conic section (as it was by Apollonius) or as a special case of ellipse.
  • The part of a cone (or pyramid) lying between two parallel planes such as this is called the Frustrum
Conics-Circle.png
Triangle
  • Included for completeness, triangles are created when a section is taken through the Apex and parallel to the central Axis.
Conics-TriangleTrans.png